Bayesian Methods in Machine Learning Seminar: 14

\{Evgenii.Egorov, Anna.Kuzina\}@skoltech.ru

Skoltech
Moscow, 2020

Generative Models

- VAE

$$
p(x)=\int p(x \mid z) p(z) d z
$$

- GANs

$$
x=G(z), z \sim p(z)
$$

- Autoregressive Models

$$
p\left(x_{1}, x_{2}, x_{3} \ldots\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots
$$

- Normalizing Flows

$$
z=f^{K} \circ \cdots \circ f^{2} \circ f^{1}(x), \text { where } f^{i} \text { is invertable } \forall i
$$

Generative Models

- VAE

$$
p(x)=\int p(x \mid z) p(z) d z
$$

- GANs

$$
x=G(z), z \sim p(z)
$$

- Autoregressive Models

$$
p\left(x_{1}, x_{2}, x_{3} \ldots\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots
$$

- Normalizing Flows

$$
z=f^{K} \circ \cdots \circ f^{2} \circ f^{1}(x), \text { where } f^{i} \text { is invertable } \forall i
$$

NF: Change of Variable formula

We'd like to learn invertable transformation from data to noise:

$$
\begin{aligned}
z & =f(x) \Rightarrow x=f^{-1}(z) \\
p_{x}(x) & =p_{z}(z)\left|\operatorname{det} \frac{\partial z}{\partial x}\right|=\text { prior } \cdot \text { volume change } \\
\log p_{x}(x) & =\log p_{z}(f(x))+\log \left|\operatorname{det} \frac{\partial f(x)}{\partial x}\right|
\end{aligned}
$$

We can combine several f, to make our transformations more powerful

$$
\begin{aligned}
x & =x_{0} \xrightarrow{f^{1}} x_{1} \ldots \xrightarrow{f^{k}} x_{k}=z \\
z & =f^{k} \circ \cdots \circ f^{2} \circ f^{1}(x) \\
\log p_{x}(x) & =\log p_{z}(f(x))+\sum_{k=1}^{K} \log \left|\operatorname{det} \frac{\partial f^{k}(x)}{\partial x_{k-1}}\right|
\end{aligned}
$$

Inference with normalizing flows

- Training

$$
\max _{\theta} \log p_{x}(x)=\max _{\theta} \log p_{z}\left(f_{\theta}(x)\right)+\sum_{k=1}^{K} \log \left|\operatorname{det} \frac{\partial f_{\theta}^{k}(x)}{\partial x_{k-1}}\right|
$$

At each step we need to:

- Evaluate $f_{\theta}(x)$
- Compute determinant of the Jacobian matrix
- Sampling

$$
\begin{aligned}
& \hat{z} \sim p(z) \\
& \hat{x}=f^{-1}(\hat{z})
\end{aligned}
$$

We only need 1 inverse pass

Inference with normalizing flows

- Training

$$
\max _{\theta} \log p_{x}(x)=\max _{\theta} \log p_{z}\left(f_{\theta}(x)\right)+\sum_{k=1}^{K} \log \left|\operatorname{det} \frac{\partial f_{\theta}^{k}(x)}{\partial x_{k-1}}\right|
$$

At each step we need to:

- Evaluate $f_{\theta}(x)$
- Compute determinant of the Jacobian matrix
- Sampling

$$
\begin{aligned}
& \hat{z} \sim p(z) \\
& \hat{x}=f^{-1}(\hat{z})
\end{aligned}
$$

We only need 1 inverse pass

Inference with normalizing flows

- Training

$$
\max _{\theta} \log p_{x}(x)=\max _{\theta} \log p_{z}\left(f_{\theta}(x)\right)+\sum_{k=1}^{K} \log \left|\operatorname{det} \frac{\partial f_{\theta}^{k}(x)}{\partial x_{k-1}}\right|
$$

At each step we need to:

- Evaluate $f_{\theta}(x)$
- Compute determinant of the Jacobian matrix
- Sampling

$$
\begin{aligned}
& \hat{z} \sim p(z) \\
& \hat{x}=f^{-1}(\hat{z})
\end{aligned}
$$

We only need 1 inverse pass
Let's choose f, for which determinant of the Jacobian is easy to compute

Idea 1: Affine Coupling Layer

Transformation used in Nice and RealNVP models.

Split input vector into two parts:

$$
\begin{aligned}
z_{1: d} & =x_{1: d} \\
z_{d+1: D} & =x_{d+1: D} \odot \exp \left(s\left(x_{1: d}\right)\right)+t\left(x_{1: d}\right)
\end{aligned}
$$

Where $s(\cdot)$ and $t(\cdot)$ are arbitrary functions and \odot is point-wise multiplication.

Task

- Derive $\frac{\partial f(x)}{d x}$
- Compute $\log \operatorname{det} \frac{\partial f(x)}{d x}$

Solution: Affine Coupling Layer

$$
\begin{aligned}
z_{1: d} & =x_{1: d} \\
z_{d+1: D} & =x_{d+1: D} \odot \exp \left(s\left(x_{1: d}\right)\right)+t\left(x_{1: d}\right) .
\end{aligned}
$$

Task

- Derive $\frac{\partial f(x)}{d x}$

$$
\frac{\partial f(x)}{d x}=\left[\begin{array}{cc}
l & 0 \\
{\left[\frac{\partial f(x)}{d x_{1: d}}\right]_{d+1: D}} & \exp \left(s\left(x_{1: d}\right)\right)
\end{array}\right]
$$

- Compute log det $\frac{\partial f(x)}{d x}$

$$
\begin{aligned}
& \operatorname{det} \frac{\partial f(x)}{d x}=\prod_{i=1}^{d} \exp \left(s\left(x_{1: d}\right)\right)_{i} \\
& \log \operatorname{det} \frac{\partial f(x)}{d x}=\sum_{i=1}^{d} s\left(x_{1: d}\right)_{i}
\end{aligned}
$$

Idea 2：Invertable 1×1 convolutions

It was noticed that permuting channels of the images between coupling layers improves flow performance．In Glow authors propose to use 1×1 convolution as a generalization of permutation operation．
Given input $x \in \mathbb{R}^{h \times w \times c}$ and weight matrix $\mathbf{W} \in \mathbb{R}^{c \times c}$ ．We can define this transformation as：

$$
f(x)_{i, j}=x_{i, j} \mathbf{W}
$$

Task

Compute log－determinant of such transformation．

Solution: Invertable 1×1 convolutions

Given input $x \in \mathbb{R}^{h \times w \times c}$ and weight matrix $\mathbf{W} \in \mathbb{R}^{c \times c}$. We can define this transformation as:

$$
f(x)_{i, j}=x_{i, j} \mathbf{W}
$$

Solution

$$
\begin{aligned}
\frac{\partial f(x)_{i, j}}{\partial x_{i, j}} & =\mathbf{W} \\
\log \operatorname{det} \frac{\partial f(x)}{\partial x} & =h \cdot w \cdot \log \operatorname{det} \mathbf{W}
\end{aligned}
$$

Since c is usually small, it is pretty cheap to compute log det and inverse.

And now, let's practice

