
1/9

Bayesian Methods in Machine Learning
Seminar: 14

{Evgenii.Egorov, Anna.Kuzina}@skoltech.ru

Skoltech

Moscow, 2020

2/9

Generative Models

I VAE

p(x) =

∫
p(x |z)p(z)dz

I GANs

x = G (z), z ∼ p(z)

I Autoregressive Models

p(x1, x2, x3 . . .) = p(x1)p(x2|x1)p(x3|x1, x2) . . .

I Normalizing Flows

z = f K ◦ · · · ◦ f 2 ◦ f 1(x), where f i is invertable ∀i

2/9

Generative Models

I VAE

p(x) =

∫
p(x |z)p(z)dz

I GANs

x = G (z), z ∼ p(z)

I Autoregressive Models

p(x1, x2, x3 . . .) = p(x1)p(x2|x1)p(x3|x1, x2) . . .

I Normalizing Flows

z = f K ◦ · · · ◦ f 2 ◦ f 1(x), where f i is invertable ∀i

3/9

NF: Change of Variable formula

We’d like to learn invertable transformation from data to noise:

z = f (x) ⇒ x = f −1(z)

px(x) = pz(z)

∣∣∣∣det ∂z∂x
∣∣∣∣ = prior · volume change

log px(x) = log pz(f (x)) + log

∣∣∣∣det ∂f (x)∂x

∣∣∣∣
We can combine several f , to make our transformations more powerful

x = x0
f 1

−→ x1 . . .
f K−→ xk = z

z = f K ◦ · · · ◦ f 2 ◦ f 1(x)

log px(x) = log pz(f (x)) +
K∑

k=1

log | det ∂f
k(x)

∂xk−1
|

4/9

Inference with normalizing flows

I Training

max
θ

log px(x) = max
θ

log pz(fθ(x)) +
K∑

k=1

log | det ∂f
k
θ (x)

∂xk−1
|

At each step we need to:
I Evaluate fθ(x)
I Compute determinant of the Jacobian matrix

I Sampling

ẑ ∼ p(z)

x̂ = f −1(ẑ)

We only need 1 inverse pass

Let’s choose f , for which determinant of the Jacobian is easy to compute

4/9

Inference with normalizing flows

I Training

max
θ

log px(x) = max
θ

log pz(fθ(x)) +
K∑

k=1

log | det ∂f
k
θ (x)

∂xk−1
|

At each step we need to:
I Evaluate fθ(x)
I Compute determinant of the Jacobian matrix

I Sampling

ẑ ∼ p(z)

x̂ = f −1(ẑ)

We only need 1 inverse pass

Let’s choose f , for which determinant of the Jacobian is easy to compute

4/9

Inference with normalizing flows

I Training

max
θ

log px(x) = max
θ

log pz(fθ(x)) +
K∑

k=1

log | det ∂f
k
θ (x)

∂xk−1
|

At each step we need to:
I Evaluate fθ(x)
I Compute determinant of the Jacobian matrix

I Sampling

ẑ ∼ p(z)

x̂ = f −1(ẑ)

We only need 1 inverse pass
Let’s choose f , for which determinant of the Jacobian is easy to compute

5/9

Idea 1: Affine Coupling Layer

Transformation used in Nice and RealNVP models.

Split input vector into two parts:

z1:d = x1:d ,

zd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d).

Where s(·) and t(·) are arbitrary functions and � is
point-wise multiplication.

Task
I Derive ∂f (x)

dx

I Compute log det ∂f (x)dx

https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803

6/9

Solution: Affine Coupling Layer

z1:d = x1:d ,

zd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d).

Task
I Derive ∂f (x)

dx

∂f (x)

dx
=

[
I 0[

∂f (x)
dx1:d

]
d+1:D

exp(s(x1:d))

]
I Compute log det ∂f (x)dx

det
∂f (x)

dx
=

d∏
i=1

exp(s(x1:d))i

log det
∂f (x)

dx
=

d∑
i=1

s(x1:d)i

7/9

Idea 2: Invertable 1x1 convolutions

It was noticed that permuting channels of the images between coupling layers improves flow
performance. In Glow authors propose to use 1x1 convolution as a generalization of
permutation operation.
Given input x ∈ Rh×w×c and weight matrix W ∈ Rc×c . We can define this transformation as:

f (x)i,j = xi,jW

Task
Compute log-determinant of such transformation.

https://arxiv.org/abs/1807.03039

8/9

Solution: Invertable 1x1 convolutions

Given input x ∈ Rh×w×c and weight matrix W ∈ Rc×c . We can define this transformation as:

f (x)i,j = xi,jW

Solution

∂f (x)i,j
∂xi,j

= W

log det
∂f (x)

∂x
= h · w · log detW

Since c is usually small, it is pretty cheap to compute log det and inverse.

9/9

And now, let’s practice

