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Approximation Inference for Non-Conjugate Models

Wide range of models of the interest 
have the posterior p(w) in the 
following form → 

Examples of such models:
- Sparse Linear Models:

Gaussian Likelihood, 
Non-Conjugate Prior for 
Sparsity

- Logistic Regression (GLM):
Gaussian Prior,
Non-Conjugate Likelihood

- … , including generative models 
(ICA)

How could we approximate posterior?



Approximation Inference for Non-Conjugate Models

Posterior p(w) approximation:

1. Laplace approximation 
(see  the Lecture material)

2. Gaussian Kullback-Leibler Approximation 
[Edward Challis et. al]

3. Boosting Variational Inference 
[Fangjian Guo et. al]

4. MaxEnt Variational Inference 
[Evgenii Egorov et. al] 

- All this methods uses as base family for approximation Gaussian distribution
- (3, 4) approaches allows to obtain approximation as mixture
- We will see a lot of similarities with Laplace Approximation
- Important conceptual distinguish from Laplace:

- Laplace approximation (1) based on the concentration of the posterior 
(Ref. for connection with Bernstein-von Mises theorem)

- Other approaches (2, 3, 4) based on optimization of the variational bound on KL 
divergence

https://www.jmlr.org/papers/v14/challis13a.html
https://arxiv.org/abs/1611.05559
https://arxiv.org/abs/1905.07855
https://arxiv.org/abs/1904.02505


Gaussian Kullback-Leibler Approximation

Problem: Using non-negative property of the KL, get lower bound to the evidence of model, Z.

We consider an approximation in the family of Gaussian distribution:  

In what sense we would like to optimize? Let’s use KL divergence:



Gaussian Kullback-Leibler Approximation

1. Entropy is closed form and concave
2. Gaussian potential leads to the closed form 

quadratic form, which is concave
3. The all difficulty lies at the last terms

a. We need to approximate it
b. So we need to make some assumption → 

Problem: 
- Find the distribution of the  w^T h_n (i.e. expectation and variance)
- Rewrite expectation of the last term as under one dimensional standard normal distribution



Gaussian Kullback-Leibler Approximation

- This objective contains only 1-dim integrals
- They could be efficiently estimated: 

-  by quadratures or we could take stochastic gradient for optimization
- We should perform optimization for covariance over the Cholesky factor, S = CC^T, so objective:



Gaussian Kullback-Leibler Approximation

Problem: 
- Prove that last term is concave, given that function $\phi$ is a concave function
- Hint: use definition of the concavity by inequality

● The all terms besides the last are clearly concave
● For arbitrary potential phi it is not the case
● So, let’s assume that phi is concave 



Boosting Variational Inference

1. Laplace or G-KL is good
2. But the approximation 

power is limited
3. Could we improve it with 

mixture of approximation 
of this kind?

4. Yep.



Boosting Variational Inference

Again, we would like to minimize the KL divergence.

In each step, we consider to learn new component 
to the current approximation: 

1. We need to optimized over new component and 
its weight 
a. It is hard, so let’s break the problem on 2 

steps: find component, than given it, find 
the weight

2. We could assume that weight is small, so we 
could make linearization

 Problem: 
- Find approximation of the KL divergence, keeping only first order terms of alpha 
- Hint: just use first term for taylor expansion of the logarithm  



Boosting Variational Inference

Approximation of the KL divergence:

Functional gradient

Make new component the same as 
negative gradient:



Boosting Variational Inference

Approximation of the KL divergence:
Functional gradient

Make new component the same as 
negative gradient: Ill posed problem with degenerate solution  



Boosting Variational Inference

Approximation of the KL divergence:
Functional gradient

Make new component the same as 
negative gradient: Ok problem, but complex → more approximation



Boosting Variational Inference

Approximation of the KL divergence:
Functional gradient

Make new component the same as 
negative gradient: Ok problem, but complex → more approximation

Ok problem, but complex → more approximation → (local) Laplace style:



Boosting Variational Inference

1. Given that component Gaussian, 
find expression for regularization term:

 2. Find the solution of the problem, using quadratic approximation:


