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https://scholar.google.ru/citations?user=LwVVunEAAAAJ

Wide range of models of the interest ]_

have the posterior p(w) in the p(w) — —N(U}‘lu, Z)H @l(w),

following form —

n=1
Examples of such models: N
- Sparse Linear Models: N
Gaussian Likelihood, Z — W E | |
Non-Conjugate Prior for ( |:u7 ) ¢n

Sparsity
- Logistic Regression (GLM):
Gaussian Prior,
Non-Conjugate Likelihood
..., including generative models
(ICA)

How could we approximate posterior?



N
rior p(w roximation: 1
Posterior p(w) approximatio p(w> — EN(U}‘IM, Z)H ¢7z(w>;

1. Laplace approximation n—1
(see the Lecture material) ”
2. Gaussian Kullback-Leibler Approximation

N
3. [Boosting Variational ILference Z — /N(w”u’ Z) H ¢n(w) dw
n=1

[ ]

4. MaxEnt Variational Inference

[ ]

- All this methods uses as base family for approximation Gaussian distribution
- (3, 4) approaches allows to obtain approximation as mixture
- We will see a lot of similarities with Laplace Approximation
- Important conceptual distinguish from Laplace:

- Laplace approximation (1) based on the concentration of the posterior

)
- Other approaches (2, 3, 4) based on optimization of the variational bound on KL
divergence


https://www.jmlr.org/papers/v14/challis13a.html
https://arxiv.org/abs/1611.05559
https://arxiv.org/abs/1905.07855
https://arxiv.org/abs/1904.02505

We consider an approximation in the family of Gaussian distribution:
g(w) = N (wlp, 5)

In what sense we would like to optimize? Let's use KL divergence:
qg\w
Klgtw)lpw)] = [ atw)iog 22 auw,

p(w)
KL >0, Vq(w),
KLlg(w)||p(w)] = 0 iff p = q.

Problem: Using non-negative property of the KL, get lower bound to the evidence of model, Z.
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entropy Gaussian potential e
site potentials

N
By (m,S) := — (logq(W)) () + (log AL(W|ps, 2)) ) + ) (10g0n(W)) ), 4

Entropy is closed form and concave L

Gaussian potential leads to the closed form Q<w) _ N(w’% S)
quadratic form, which is concave o
The all difficulty lies at the last terms <¢n< )> —

a. We need to approximate it )
b. So we need to make some assumption — Assumptlon: ¢n (w> — §bn (’LU

Problem:
- Find the distribution of the w”T h_n (i.e. expectation and variance)
- Rewrite expectation of the last term as under one dimensional standard normal distribution

Th,).



1 N
QKL (m,S) — Elogdet 27C€S Z log¢n my +an)> AN(z]0,1)

N

v N >4

entropy g .
site projection potentials

— % [logdet(ZJtE) +(m—p)" =7 (m— ) + trace (E_IS)] - (D)

A 7
-~

Gaussian potential

my,:=m"h, and 52 :=

- This objective contains only 1-dim integrals
- They could be efficiently estimated:
- by quadratures or we could take stochastic gradient for optimization
- We should perform optimization for covariance over the Cholesky factor, S = CC*T, so objective:

D
By (m,C) = Y logCaq— %mTE‘lqup,TE_lm - %trace (=71'CCT) + (logd(w'h)).  (8)
d=1

h'Sh,



D
By (m,C) = Y logCus — %mTZ_1m+uT2_1m - %trace (=7'CCT) + (logd(w'h)).  (8)
d=1

e The all terms besides the last are clearly concave
e For arbitrary potential phi it is not the case
e So, let's assume that phiis concave

Problem:
- Prove that last term is concave, given that function $\phi$ is a concave function
- Hint: use definition of the concavity by inequality



—

Laplace or G-KL is good
But the approximation
power is limited

Could we improve it with
mixture of approximation
of this kind?

Yep.
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FIGURE 1. Algorithm 2 identifies new component hs by finding a
(local) peak of the log residual and its corresponding Hessian.
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Again, we would like to minimize the KL divergence. KL[q(w)Hp(w)] _ /q(w) log Q(w) duw

p(w)

KL >0, VYq(w),
KL[g(w)|[p(w)] = 0iff p=gq.

In each step, we consider to learn new component

to the current approximation: Gt = (1 - Oét)Qt—l + aihy.

1. We need to optimized over new component and

its weight
a. lItis hard, so let’s break the problem on 2 D((1—¢€)g+€eh)=D(g+¢€ (h—q))
steps: find component, than given it, find _ B 2

2.  We could assume that weight is small, so we
could make linearization

Problem:
- Find approximation of the KL divergence, keeping only first order terms of alpha
- Hint: just use first term for taylor expansion of the logarithm



Approximation of the KL divergence:

+ o (he, log(gi—1/f)) |‘ ay(gi—1,l0g(qi—1/f)) +o(of). (14)

Make new component the same as
negative gradient:

25KL(%) — ﬁKL(Qt—1)

L) = arg min(hy, log - Lt

qt—
ht = arg Iﬂh?X<ht7 log f ht f



Approximation of the KL divergence:
Functional gradient

ﬁKL(Qt) = ﬁKL(Qt—l) +H o (he, log(gi—1/f)) |‘ a¢(qe—1,log(qi—1/f)) + 0(0%) (14)

Makenewcomponentthesameas
negative gradient: - lll posed problem with degenerate solution

. qt—1
hy —&rgm}gx(ht, log — 7 —) = i 7




Approximation of the KL divergence:
Functional gradient

ﬁKL(Qt) = ﬁKL(Qt—l) +H o (he, log(gi—1/f)) |’ a¢(qi—1,log(qi—1/f)) + (at -

Make new Component the same as SO E 6 e e e EEEEE0EE000060000000000000000000000000000 :
negative gradient: - Ok problem, but complex — more approximation

qt— 1> CI—1>

h; = arg m}g&(ht, log 7 i 7




Approximation of the KL divergence:
Functional gradient

ﬁKL(Qt) = ﬁKL(Qt—l) +H o (he, log(gi—1/f)) |’ at(qe—1,10g(qi—1/f)) + o(eg).

Make new Component the same as QO0000000000000000000N0000000000000000000000000000000000000C .

negative gradient: - Ok problem, but complex — more approximation
1 dt—1
by = axgma(hy, ~log %) ~[argmin(h, tog 1) 42 log [14]
he f he f 2

log(f(0)/q:-1()) ~ ——(49 )" H(6 — 1) + const.
hy(6) = Nu,x(6)



1. Given that component Gaussian,
find expression for regularization term:

log [|Alz = .

2. Find the solution of the problem, using quadratic approximation:

dt—1
ht—argnlhz}x(ht, log — 7

log(f(0)/q:-1(09)) =

h¢(9) u 2(9)

) =

?

h¢(9) = u 2(9)

arg min(h;, log —

hit

di—1
/

)

+3 log || 213

(9 n)T H(6 — n) + const.




