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Recap: EM equations

Problem: max
θ

log p(x ; θ) = max
θ

log

∫
p(x , z ; θ)dz ,

Variational Bound:(H[q] = −〈log q〉q).

log

∫
p(x , z ; θ)dz = max

q(z)
〈log p(x , z ; θ)〉q(z) + H[q],

p(z |x ; θ) = arg max
q(z)
〈log p(x , z ; θ)〉q(z) + H[q],∫

log p(x , z ; θ)dz ≥ 〈log p(x , z ; θ)〉q(z) + H[q].

Hence, we have EM iterations:

E-step: q(z) = p(z |x ; θold),

M-step: max
θ
〈log p(x , z ; θ)〉q(z).
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Problem: Mixture Separation

Consider following model:

p(x) = γp0(x) + (1− γ)p1(x),

p0(x) = α[x = 1] + (1− α)[x = 2],

p1(x) = β[x = 2] + (1− β)[x = 3].

From iid sample X = {xn}Nn=1 we need to recover θ = {α, β, γ}.
I Note, that problem max

θ
log p(X ) is not concave or log-concave.

I We will use EM-algorithm. It is still converge to the local optimum, but quick and
efficiently :)
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Model specification

To apply EM, we need to specify who-is-who:

θ = {α, β, γ},

P(X ,Z ; θ) =
N∏

n=1

p(xn, zn; θ) =
N∏

n=1

p(xn|zn; θ)p(zn),

p(xn|zn; θ) = pzn(xn; θ),

p(zn) = γ[zn = 0] + (1− γ)[zn = 1].

Note, that our latent variables zn are local, and θ is global.
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Problem: E-step

Initialize θ some how reasonable and we need to estimate:

p(zn = 1|xn = 1, θold) = ?

p(zn = 1|xn = 2, θold) = ?

p(zn = 1|xn = 3, θold) = ?
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Problem: M-step

And we need to solve:

max
θ
〈log p(X ,Z ; θ)〉q(Z) = max

θ

N∑
n=1

〈log p(xn, zn; θ)〉p(zn|xn;θold).

Encourage you to do it at home. At the class we consider the general case.
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Derivation of Discrete Mixture Model For Exponential Family

The goal of the note is to establish the connection between the MLE estimator for a
non-mixture model and MLE estimator for each component of the discrete mixture model.
Model for K components:

X = {xn}Nn=1,

θ = {λ1, . . . , λk , π1, . . . , πK},
p(xn|zn = k ; θ) = exp (〈φ(xn), λk〉 − F (λk)) ,

F (λk) =

∫
X

exp (〈φ(x), λk〉) dx ,

p(zn = k) = πk ,∀n.

Note, that zn are local variables and θ is global.
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Problem: E-step

E-step is trivial as usual for discrete mixture model:

p(zn = k|xn; θold) =
πkp(xn|zn = k)∑

k′
πk′p(xn|zn = k ′)

=
πk exp (〈φ(xn), λk〉 − F (λk))∑

k′
πk′ exp (〈φ(xn), λk′〉 − F (λk′))

.

I It is computationally stable to estimate log of p(zn = k|xn; θold)) matrix and use for
denominator sum-log-exp trick.

I For large n we have a scale problem.

https://en.wikipedia.org/wiki/LogSumExp
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Problem: M-step

M-step is more interesting and has the wonderful connection with simple MLE.
Let me denote solution of E-step: q(zn = k |xn; θold) = qnk

θnew = arg max
θ

N∑
n=1

〈log p(xn, zn; θ)〉q(tn|xn;θold).

Model for K components:

X = {xn}Nn=1,

θ = {λ1, . . . , λk , π1, . . . , πK},
p(xn|zn = k ; θ) = exp (〈φ(xn), λk〉 − F (λk)) ,

F (λk) =

∫
X

exp (〈φ(x), λk〉) dx ,

p(zn = k) = πk ,∀n.
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Solution: M-step

πk =
1
N

N∑
n=1

qnk ,

N∑
n=1

qnkφ(xn)

N∑
n=1

qnk

= 〈φ(x)〉p(x ;λk ).

We can recall a similar result for simple MLE estimation:

log p(x1, . . . , xn;λ) = 〈
N∑

n=1

φ(xn), λ〉 − NF (λ).

Hence, we obtain by first order optimal condition :
1
N

N∑
n=1

φ(xn) = 〈φ(x)〉p(x ;λ).

So, we can see that our EM algorithm works just make soft-clustering and estimation of MLE
inside each cluster. We can easily go further and add prior to the θ.
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Problem: Multivariate Student Distribution

Recall Gamma distribution:

Gammax ;α, β =
βα

Γ(α)
xα−1 exp (−βx) .

Consider:
p(x |z) = N (µ, z−1Σ), p(z) = Gamma(

ν

2
,
ν

2
).

And their mixture model:

p(x |µ,Σ, ν) =

∫
R+

p(x |µ, z−1Σ)p(z)dz .
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Solution: Multivariate Student Distribution

p(x |µ,Σ, ν) =
Γ(ν+d

2 )

Γ(ν
2 )
|νπΣ|− 1

2

(
1 +

1
ν

(x − µ)TΣ−1(x − µ)

)− d+ν
2

.

The mixture representation much easier for taking expectations, linear transformations,
conditioning . . . .
For example, you can just use:

Ex = EzEx|zx = µ.


