MaxEntropy Pursuit Variational Inference ISNN'16, Moscow

Evgenii Egorov¹ Kirill Neklydov^{2,3} Ruslan Kostoev¹ Evgeny Burnaev¹

Skolkovo Institute of Science and Technology, Moscow, Russia {e.egorov, r.kostoev, e.burnaev}@skoltech.ru

National Research University Higher School of Economics, Moscow, Russia

Samsung Al Center in Moscow, Moscow, Russia k.necludov@gmail.com

June, 2019

Schedule

1 Overview

2 MaxEntropy Pursuit Variational Inference

Overview

Probabilistic Machine Learning: Approach

- A probabilistic model considers the joint distribution over the
 - observed variables x (training data)
 - \blacksquare the hidden variables θ (the parameters of the interest)
- The Bayesian Inference suggests to estimate unknowns through posterior distribution:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int\limits_{\Theta} p(x|\theta)p(\theta)d\theta},$$

where

 $p(\theta)$ is the prior distribution, $p(x|\theta)$ is the assumed model.

5/14

Probabilistic Machine Learning: Challenge

Benefits

- Prior Knowledge/Structure Incorporation
- Ensembles
- Uncertainty Estimation
- Coherent framework for the Sequential/Distributive Learning

Challenge

Evaluation of the posterior $p(\theta|x)$ is hard as require integration:

$$\int_{\Omega} p(x|\theta)p(\theta)d\theta,$$

 Θ high-dimensional space, $p(x|\theta)$ complex model (i.e. Deep Neural Network).

Solution:

Approximate Inference

Approximate Inference: Approaches

MCMC

- Choose the proposal distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}
- Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution
- 3 Approximate expectations over $p(\theta|x)$ with averaging over the Markov chain samples

Variational Inference

- Choose the surrogate distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}
- Define the optimization problem by divergence minimization:

$$\mathcal{B}[p(x|\theta)p(\theta); q_{\phi}(\theta)]$$

"Tractable"

- Easy to sample from
- Easy to evaluate log-density

6/14

7/14

Approximate Inference: Challenges

MCMC

Pros

- Allow to trade computation time for increased accuracy
- Asymptotically unbiased
- Provide samples

Cons

- Sensitive to proposal selection
- Convergence diagnostic is hard
- Bad scalability (both on data and dimension)
- Provide only samples

Variational Inference

Pros

- Scalability: Fine with stochastic optimization and amortization
- Easy to use incorporate the structure of the problem to efficient optimization
- Flexible Q_λ families parametrized by DNN
- Provide approximations with density

Cons

- Biased (underestimating the posterior variances)
- Optimization is hard

MaxEntropy Pursuit Variational Inference

MPVI: General Idea

Solution Plan

- lacktriangle Select family of simple "base learners" $q(\theta) \in Q_{\lambda}$, i.e. Normal Densities
- Iteratively improve the approximation by additive convex update $q_t(\theta) = (1 \alpha)q_{t-1}(\theta) + \alpha q_t(\theta)$
- Perform functional gradient descent over KL-divergence to select each component

Challenges

- Avoid degenerate solution (mixture of delta functions)
- Keep inference data scalable and computationally efficient
- Avoid model specific work

9/14

10 / 14

MPVI | Component Optimization: Problem

- Given some approximation of the posterior distribution q_t .
- Goal is to improve accuracy of the approximation
- In terms of the KL-divergence by using the additive mixture:

$$q_{t+1} = (1 - \alpha)q_t + \alpha h, \ \alpha \in (0, 1), \ h \in Q.$$

Using Maximum Entropy Approach we can state the following optimization problem:

$$\max_{h \in \mathcal{Q}} \mathcal{H}[h], s.t.$$

$$\mathcal{F}[q_{t+1}] - \mathcal{F}[q_t] > 0.$$

Using Taylor expansion, we obtain the constraint in the following form:

$$\mathcal{F}[q_{t+1}] - \mathcal{F}[q_t] = \alpha \left\langle h - q_t, \log \frac{L(\theta)}{q_t} \right\rangle - \alpha^2 \int \frac{(h - q_t)^2}{q_t} d\theta + o\left(\alpha \left\| \frac{h - q_t}{q_t} \right\|_2\right).$$

Considering the first order terms, we get the following optimization problem:

$$\max_{h \in Q} \mathcal{H}[h] + \lambda \left\langle h, \log \frac{L(\theta)}{q_t} \right\rangle.$$

Bayesian Inference June, 2019

MPVI | Component Optimization: Solution

$$\max_{h \in Q} \mathcal{H}[h] + \lambda \left\langle h, \log \frac{L(\theta)}{q_t} \right\rangle.$$

Problem Proprieties

- Strictly concave over h
- Could be solved by stochastic gradient optimization, i.e. scalable over dataset size
- Exact solution is

$$h^* = \frac{1}{Z(\lambda)} \left[\frac{L(\theta)}{q_t} \right]^{\lambda} = \arg\min_{h \in Q} D_{KL} \left(h \middle| \left| \frac{1}{Z(\lambda)} \left[\frac{L(\theta)}{q_t} \right]^{\lambda} \right).$$

λ selection heuristic

For U (uniform) and $p:\mathcal{H}[p]>\mathcal{H}[U],\ T_{\lambda}:p\to \frac{p^{\lambda}(\theta)}{\int p^{\lambda}(\theta)d\theta},\ \lambda>0$ holds:

$$D_{KL}(U||p) > D_{KL}(U||T_{\lambda}p)$$
, for $\lambda > 1$,
 $D_{KL}(U||p) < D_{KL}(U||T_{\lambda}p)$, for $\lambda < 1$.

Bayesian Inference

MPVI | Connection with Variational Inference

Variational Inference optimization problem:

$$\arg\max_{h\in Q}\int h\log\frac{L(\theta)}{h}d\theta.$$

For $\lambda = 1$ **MPVI** optimization problem:

$$\arg\max_{h\in Q}\mathcal{H}[h] + \left\langle h, \log\frac{L(\theta)}{q_t} \right\rangle = \arg\max_{h\in Q}\underbrace{\int h \log\frac{L(\theta)}{h}d\theta}_{\text{term (1)}} - \underbrace{\int h \log q_t d\theta}_{\text{term (2)}}.$$

We can note than:

- Term (1) corresponds to the standard Variational Inference objective
- Term (2) plays the role of **similarity penalty** with the current solution q_t

MPVI | Weight Optimization

After we obtain the new mixture component h for the current variational approximation q_t , we should select the mixture weight α to obtain a new variational approximation as a convex combination:

$$q_{t+1}(\theta) = (1 - \alpha)q_t(\theta) + \alpha h(\theta).$$

Hence, let us state the optimization problem over $\alpha \in (0; 1)$:

$$\min_{\alpha \in (0;1)} D_{KL}((1-\alpha)q_t(\theta) + \alpha h(\theta)||p(\theta|X)).$$

Theoretical solution

Convex problem

Implementation

In practise we use stochastic gradient descent over α

MPVI Incremental Learning

Problem: Neural Networks suffer from Catastrophic Forgetting

Solution: $p(\theta|x, x^{\text{new}}) \approx (1 - \alpha)q(\theta|x) + \alpha q(\theta|x^{\text{new}})$

Experiment

Dataset: MNIST, 10 classes classification

Incremental setting: pair classes arrive: 0

vs 1, 2 vs 3, .etc

Neural Network: LeNet-5

Prior: Factorized Normal

Metric: Accuracy

