

MH

Target Distribution	Density Function	Set of
Proposal Generator	Explicit (Restrictive)	Implici
•		
Acceptance Probability	Depends on Exact Density Ratio	Depend Density
Guarantees	Holds	See Ou

Sampling algorithm = Transitional kernel

acceptance probability

 $+\delta(\bullet-\bullet)$ $t(\bullet|\bullet) = q(\bullet|\bullet)$

proposal generator

rejection probability

The Implicit Metropolis-Hastings Algorithm

Evgenii Egorov, **Dmitry Vetrov** Kirill Neklyudov,

Our Result (Intrition)

We study **Fixed Point Equation** for t_{IMH}

For MH: $t^{i}(\mathcal{N}) = t\left(t^{i-1}(\mathcal{N})\right)$ $t^i(\mathcal{M}) = \mathcal{M} = t^\infty, \ \forall i$

For IMH: $t^i(\mathcal{N}) \neq \mathcal{N}$ Under mild conditions:

 $||t^i(\bigwedge) - \bigwedge ||_{TV}$

 $\leq \frac{1}{1-\varepsilon} \| t \left(\bigwedge \right) - \bigwedge \|_{TV}$

 $||t^{\infty} - \Lambda_{\infty}|| \leq \operatorname{Loss}(d(\cdot, \cdot)) + \operatorname{Const.}$

We obtain Losses to enforce Fixed Point Equation

Losses over $d(\cdot, \cdot)$ for kernels:

with Markov Proposal

Upper bound (UB)

 $\left[dxdy \ p(x)q(y \mid x) \left[\log \frac{d(y,x)}{d(x,y)} + \frac{d(y,x)}{d(x,y)} \right] \right]$

Markov cross-entropy (MCE)

 $dxdy p(x)q(y | x)[-\log d(x, y) - \log(1 - d(y, x))]$

with Independent Proposal

Conventional cross-entropy (CCE)

 $dxdy p(x)q(y)[-\log d(x)(1-d(y))]$

IMH

Samples

cit (Rich Family)

ds on Estimated ty Ratio

ur Results /





