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Motivation

Given:

(implicit) generative model q(x |y) (VAE, GAN, .etc)

empirical data distribution pe(x) (a target distribution represented by a set of
samples)

We would like to:

Introduce the Markov chain based on the proposal q(x |y), with bounded distance
between its stationary distribution and pe(x)

As result we obtain:

1 Loss functions to upper bound on the distance between the target distribution and
the stationary distribution of the proposed chain

2 Empirical validation the obtained theoretical result on real-world datasets
(CIFAR-10, CelebA)

3 We also demonstrate empirical gains by applying our algorithm for Markov
proposals.
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What is Markov Chain?

What is time homogeneous, discrete time Markov Chain?

Intuition
When considering a Markov chain on a general state space X (comparing to the
discrete state space), we should think about sets, rather than points

The transition probabilities Pr{Xn ∈ B|Xn−1 = x} are specified by a kernel P(x ,B):
for each fixed x the function B → P(x ,B) is a probability measure
for each fixed B the function x → P(x ,B) is a measurable function

And we could write n-step kernel:

Pn(x ,B) =

∫
X

P(z,B)Pn−1(x , dz), n ≥ 2.

Our case is nice
If the distribution of Xn given Xn−1 is a continuous distribution on Rd with some density
q(y |x), then the kernel could be written in the following way:

P(x ,B) =

∫
B

q(y |x)dy .
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Special kernel: The Identity Kernel

All stay in place kernel

Consider special Markov kernel, which produce its self very uninteresting chain, still it
is very useful.

for fixed x , the measure I(x , ·) is the probability measure concentrated at x , δ(x)

for fixed B, the function I(·,B) is the indicator of the set B.

Also it is clear example that kernels are non-commutative (in discrete states it was
matrix multiplication):

(IP)(x ,B) =

∫
X

I(x , dy)P(y ,B) =

∫
X
δx (dy)P(y ,B) = P(x ,B)

(PI)(x ,B) =

∫
X

P(x , dy)I(y ,B) =

∫
B

P(x , dy) = P(x ,B)
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States classification

Discrete State Space
Define the occupation time of the state i to be

ηi :=
∞∑

n=1

I{Xn = i}.

Def.
The state is recurrent if Eηi =∞.

General State
Define the occupation time of a set R to be

ηR :=
∞∑

n=1

I{Xn ∈ R}.

Def.
The set R is recurrent if EηR =∞ for all x ∈ R.
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Invariant measures and Reversible Markov chains

Def.
A measure p on B(X) with the property:

p(A) =

∫
X

p(dx)P(x ,A), ∀A ∈ B(X),

will be called invariant and the chain p-invariant.

Def.
A p-reversible Markov chain is a p-invariant Markov chain satisfying

Pπ(X0 ∈ A0,X1 ∈ A1) = Pπ(X0 ∈ A1,X1 ∈ A0),

i.e
∫

A0
p(dx)P(x ,A1) =

∫
A1

p(dx)P(x ,A0).

"Detailed balance"
As soon as we have densities for kernel, we could write it point-wise:

p(x)q(y |x) = p(y)q(x |y)
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Accept-Reject Kernel

Consider pMH (x , y) = q(y |x)α(x , y) and the detailed balance holds:

p(x)pMH (x , y) = p(x)q(y |x)α(x , y) = p(y)q(x |y)α(y , x) = p(y)pMH (y , x).

Consider the kernel: P(x ,A) =
∫

A pMH (x , y)dy + r(x)I(x ,A)

Then we could check the p-reversibility:∫
A0

p(dx)P(x ,A1) =

∫
A0

p(x)dx

[∫
A1

pMH (x , y)dy + r(x)I(x ,A1)

]
=

=

∫
A0

∫
A1

p(x)pMH (x , y)dxdy +

∫
A0∩A1

p(x)r(x)dx =

=

∫
A1

∫
A0

p(x)pMH (x , y)dxdy +

∫
A0∩A1

p(x)r(x)dx =

∫
A1

p(dx)P(x ,A0)

Metropolis-Hastings, Peskun

The question is how to choose the function α(x , y)? With different choice the algorithm
still valid!

The thing to keep in mind∫
|p(x)q(y |x)α(x , y)− p(y)q(x |y)α(y , x)|dxdy
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Metropolis-Hastings

Metropolis [1953], Hastings [1970], Manhattan project: taking expectations on
correlated samples

The most Markov chains used in statistics are constructed using reversible
Markov transition kernels.

The kernel based on the proposals and rejections with the test

α(x , y) = min

(
1,

p(y)q(y |x)

p(x)q(x |y)

)

Limitation
We need to have the non-normalized densities both for the proposal and the target
distributions.

Cruel reality

The distributions of the interest at the ML are empirical

The most powerful generative models are implicit (VAE, GAN)
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Proposition

Proposed kernel transition kernel of the Implicit Metropolis-Hastings algorithm:

t(x |y) = q(x |y) min

(
1,

d(x , y)

d(y , x)

)
+ δ(x − y)

∫
dx ′q(x ′ | y)

(
1−min

(
1,

d(x ′, y)

d(y , x ′)

))
.

We want to get the answer for questions:

Does the kernel is the valid markov kernel?

Does the distribution t∞ exists?

How we should choose (train) the test function to bound
‖t∞ − p‖TV = 1

2

∫
|t∞(x)− p(x)|dx for given proposal?
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Assumptions

We require:

The proposal distribution q(x |y) and the discriminator d(x , y) to be continuous
and positive on RD × RD .

Limit the range of the discriminator as d(x , y) ∈ [b, 1] ∀x , y , where b is some
positive constant that can be treated as a hyperparameter of the algorithm.

The minorization condition (Robertset al., 2004) the proposal q(x | y) to satisfy
minorization condition with some constant and distribution ν (note that for an
independent proposal, the minorization condition holds automatically with = 1).

Minorization condition:

q(x |y) > εν(x) ∀(x , y) ∈ RD × RD .

Minorization condition is the interesting one.
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Intuition for the Minorization condition

First, let’s note that with minorization condition for proposal, we also have one for the
whole transitional kernel:

t(x |y) ≥ bq(x |y) > bεν(x) = εν(x)

Hence, we could consider the following residual kernel (easy to see that it is valid
kernel iff t(x|y) is the valid kernel):

r(x |y) =
t(x |y)− εν(x)

1− ε
Therefore, we could consider our markov kernel as the mixture of the independent
sampler and residual markov kernel:

t(x |y) = εν(x)︸ ︷︷ ︸
Independent

+ (1− ε)r(x |y)︸ ︷︷ ︸
Markov Guy

.

The Independent Guy makes chain "good": ν-recurrent, irreducible

We could go further and restrict our minorization condition to be valid only on the
some set. But then we need to introduce and formalize the "drift" of the chain to
that set.
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Bound 1

Proposition 1

Consider a transition kernel t(x |y) that satisfies the minorization condition
t(x |y) > ν(x) for some > 0, and distribution ν. Then the distance between two
consequent steps decreases as:

‖tn+2 − tn+1‖TV ≤ (1− ε)‖tn+1 − tn‖TV ,

where distribution tk+1(x) =
∫

t(x |y)tk (y)dy .

Now we can upper bound the TV-distance between an initial distribution t0 and the
stationary distribution t∞ of the Implicit Metropolis-Hastings.

‖t∞ − t0‖TV ≤
∞∑
i=0

‖ti+1 − ti‖TV ≤
∞∑
i=0

(1− b)i‖t1 − t0‖TV =
1
b
‖t1 − t0‖TV

Also we could start at the sample from the target distribution of our chain t(x |y):

‖t∞ − p‖TV ≤
1
b
‖t1 − p‖TV =

1
2b

∫
dx
∣∣∣∣ ∫ t(x |y)p(y)dy − p(x)

∣∣∣∣.
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Bound 2

Proposition 2

For the kernel t(x | y) of the implicit Metropolis-Hastings algorithm, the distance
between initial distribution p(x) and the distribution t1(x) has the following upper bound

‖t1 − p‖TV ≤ 2
∥∥∥∥q(y | x)p(x)− q(x | y)p(y)

d(x , y)

d(y , x)

∥∥∥∥
TV
,

∥∥∥∥q(y | x)p(x)− q(x | y)p(y)
d(x , y)

d(y , x)

∥∥∥∥
TV

=
1
2

∫
p(y)q(x | y)

∣∣∣∣q(y | x)p(x)

q(x | y)p(y)
−

d(x , y)

d(y , x)

∣∣∣∣dxdy

Also, the same as:

The thing to keep in mind∫
|p(x)q(y |x)α(x , y)− p(y)q(x |y)α(y , x)|dxdy

So, we force to satisfy the "detailed balance" condition.
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Bound 3, 4

Still, we have the ratio of the densities. Hence, we used the Pinsker inequality:

Proposition 3

For a distribution α(x) and some positive function f (x) > 0 ∀x the following inequality
holds:

‖α− f‖2
TV ≤

(
2Cf + 1

6

)
(K̂L(α‖f ) + Cf − 1),

where Cf is the normalization constant of function f : Cf =
∫

f (x)dx , and K̂L(α‖f ) is
the formal evaluation of the KL divergence

K̂L(α‖f ) =

∫
α(x) log

α(x)

f (x)
dx .

Let’s apply it to the our bound:

∥∥∥∥q(y | x)p(x)− q(x | y)p(y)
d(x , y)

d(y , x)

∥∥∥∥
TV

=
1
2

∫
p(y)q(x | y)

∣∣∣∣q(y | x)p(x)

q(x | y)p(y)
−

d(x , y)

d(y , x)

∣∣∣∣dxdy
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Bound 3, 4

Applying the Pinsker:∥∥∥q(y | x)p(x)− q(x | y)p(y) d(x,y)
d(y,x)

∥∥∥2
≤ 2C+1

6

(
K̂L
(

q(y | x)p(x)

∣∣∣∣q(x | y)p(y) d(x,y)
d(y,x)

)
+C−1

)
.

Here C is the normalization constant of q(x | y)p(y) d(x,y)
d(y,x)

. As we bound our
d(x,y)
d(y,x)

∈ [b, 1
b ], we also have the upper bound on the C as 1

b .

The Loss:

‖t∞ − p‖2
TV ≤

1
b2ε2

‖t1 − p‖2
TV ≤

4
b2ε2

∥∥∥∥q(y | x)p(x)− q(x | y)p(y)
d(x , y)

d(y , x)

∥∥∥∥2

TV
≤

≤
(

4 + 2b
3ε2b3

)(
E x ∼ p(x)

y ∼ q(y | x)

[
log

d(y , x)

d(x , y)
+

d(y , x)

d(x , y)

]
︸ ︷︷ ︸

loss for the discriminator

−1 + KL
(

q(y | x)p(x)

∥∥∥∥q(x | y)p(y)

))
.

Minimization of the resulting upper bound w.r.t. the discriminator d(x , y) is equivalent
to the following optimization problem:

min
d
E x ∼ p(x)

y ∼ q(y | x)

[
log

d(y , x)

d(x , y)
+

d(y , x)

d(x , y)

]
.
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The Loss

min
d
E x ∼ p(x)

y ∼ q(y | x)

[
log

d(y , x)

d(x , y)
+

d(y , x)

d(x , y)

]
.

We could take the point-wise gradient d(x , y) in a single point (x , y), and find out
optimal d .

∇d(x,y)

(
p(x)q(y | x)

[
log

d(y , x)

d(x , y)
+

d(y , x)

d(x , y)

]
+ p(y)q(x | y)

[
log

d(x , y)

d(y , x)
+

d(x , y)

d(y , x)

])
= 0

% some equations% and optimal answer:

p(x)q(y | x)

p(y)q(x | y)
=

d(x , y)

d(y , x)

What is nice:
It is the DRE, and the original TV is 0 at the optimal point.
The "discriminator" takes 2 samples: from the target distribution and proposal

Question: relation to the cross entropy
loss?
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Relation to the cross entropy (and more upper bounds)

It is possible to upper bound the loss by the binary cross-entropy. For a Markov
proposal, it is

E x ∼ p(x)
y ∼ q(y | x)

[
log

d(y , x)

d(x , y)
+

d(y , x)

d(x , y)

]
≤ E x ∼ p(x)

y ∼ q(y | x)

[
−log d(x , y)−log(1−d(y , x))+

1
b

]
.

In the case of an independent proposal, we factorize the discriminator as
d(x , y) = d(x)(1− d(y)) and obtain the following inequality

E x ∼ p(x)
y ∼ q(y | x)

[
log

d(y , x)

d(x , y)
+

d(y , x)

d(x , y)

]
≤ −Ex∼p(x) log d(x)−Ey∼q(y) log(1− d(y)) +

1
b

Thus, learning a discriminator via the binary cross-entropy, we also minimize the
distance ‖t∞ − p‖TV .
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The Algorithm

Algorithm 1
The implicit Metropolis-Hastings algorithm

Input: target dataset D
Input: implicit model q(x | y)
Input: learned discriminator d(·, ·)
y ∼ D initialize from the dataset
for i = 0 . . . n do
sample proposal point x ∼ q(x | y)

P = min{1, d(x,y)
d(y,x)

}

xi =

{
x , with probability P
y , with probability (1− P)

y ← xi
end for {x0, . . . , xn}
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Experiments
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General Set-up

For both independent and markov proposal, we have the following routine
Pipe-line:

1 Given some trained generator (WPGAN, VAE), we train the discriminator (a bit)

2 Then we perform The Implicit MH sampling

3 Stop on the reasonable empirical Acceptance Rate

Data/Metrics:

1 Datasets: CIFAR10, CelebA

2 Metrics: Inception score, FID

IS(G) = exp(EgDKL(p(y |x)||Egp(y |x))

FID(pe,G) = ‖µg − µpe‖2
2 + Tr

(
Σpe + Σg − 2(Σpe Σg)0.5

)
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Independent proposal: WPGAN
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Figure: Monotonous improvements in terms of FID and IS for the learning of discriminator by CCE. During iterations,
we evaluate metrics 5 times (scatter) and then average them (solid lines). For a single metric evaluation,
we use 10k samples. Higher values of IS and lower values of FID are better. Performance for the original
generator corresponds to 0th iteration of a discriminator.
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Independent proposal: VAE
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Figure: Monotonous improvements in terms of FID and IS for the learning of discriminator by CCE. During iterations,
we evaluate metrics 5 times (scatter) and then average them (solid lines). For a single metric evaluation,
we use 10k samples. Higher values of IS and lower values of FID are better. Performance for the original
generator corresponds to 0th iteration of a discriminator.
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Markov proposal

Proposal Markovisation:

To simulate Markov proposals we take the same WPGAN as in the independent case
and traverse its latent space by a Markov chain.

zx = cos(t)zy + sin(t)v , v ∼ N (0, I).

Loss estimation require samples from the dataset x ∼ q(x | y), y ∼ p(y). To sample an
image x ∼ q(x | y) we need to know the latent vector zy for an image y from the
dataset. We find such vectors by optimization in the latent space.

Figure: Samples from CIFAR-10 (top line) and their reconstructions (bottom line)

Discriminator:

d(x , y) =
1

1 + exp(net(y)− net(x))
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Markov proposal: WPGAN
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Figure: Monotonous improvements in terms of FID and IS
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Markov proposal: WPGAN
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Figure: Monotonous improvements in terms of FID and IS
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